Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 587
Filtrar
1.
Int J Biol Macromol ; 267(Pt 1): 131166, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582464

RESUMO

Here, the simultaneous effect of chemo- and photothermal therapy against epidermoid carcinoma (EC) was investigated. A novel hydrogel, termed bionanogel (BNG), was designed using psyllium mucilage polysaccharide and bacterial gellan gum, incorporated with nanocomplex carrying caffeic acid (CA) and IR-820, and further characterized. The dual effect of BNG and 808 nm laser (BNG + L) on EC was investigated. Staining and scratch assays were performed to analyze their therapeutic effect on EC. In vivo evaluations of BNG + L in xenograft models were performed. Rapid transition, limited swelling, degradability and high tensile strength indicated BNG stability and sustained drug release. Irradiation with 808 nm laser light at 1.25 W /cm2 for 4 min resulted in a temperature increase of 53 °C and facilitated cell ablation. The in vitro studies showed that BNG + L suppressed cancer progression via a late apoptotic effect. The in vivo study showed that the slow release of CA from BNG + L significantly attenuated EC with low mitotic index and downregulation of proteins involved in cancer proliferation such as EGFR, AKT, PI3K, ERK, mTOR and HIF-1α. Thus, BNG could be a novel medium for targeted and controlled drug delivery for the treatment of epidermoid cancer when triggered by NIR light.


Assuntos
Ácidos Cafeicos , Carcinoma de Células Escamosas , Polissacarídeos Bacterianos , Psyllium , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/administração & dosagem , Animais , Humanos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Camundongos , Psyllium/química , Psyllium/farmacologia , Linhagem Celular Tumoral , Polissacarídeos/química , Polissacarídeos/farmacologia , Hidrogéis/química , Ensaios Antitumorais Modelo de Xenoenxerto , Sistemas de Liberação de Medicamentos
2.
Int J Biol Macromol ; 267(Pt 2): 131521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608976

RESUMO

Herein, the effects of anionic xanthan gum (XG), neutral guar gum (GG), and neutral konjac glucomannan (KGM) on the dissolution, physicochemical properties, and emulsion stabilization ability of soy protein isolate (SPI)-polysaccharide conjugates were studied. The SPI-polysaccharide conjugates had better water dissolution than the insoluble SPI. Compared with SPI, SPI-polysaccharide conjugates had lower ß-sheet (39.6 %-56.4 % vs. 47.3 %) and α-helix (13.0 %-13.2 % vs. 22.6 %) percentages, and higher ß-turn (23.8 %-26.5 % vs. 11.0 %) percentages. The creaming stability of SPI-polysaccharide conjugate-stabilized fish oil-loaded emulsions mainly depended on polysaccharide type: SPI-XG (Creaming index: 0) > SPI-GG (Creaming index: 8.1 %-21.2 %) > SPI-KGM (18.1 %-40.4 %). In addition, it also depended on the SPI preparation concentrations, glycation times, and glycation pH. The modification by anionic XG induced no obvious emulsion creaming even after 14-day storage, which suggested that anionic polysaccharide might be the best polysaccharide to modify SPI for emulsion stabilization. This work provided useful information to modify insoluble proteins by polysaccharides for potential application.


Assuntos
Emulsões , Óleos de Peixe , Galactanos , Mananas , Gomas Vegetais , Polissacarídeos Bacterianos , Solubilidade , Proteínas de Soja , Mananas/química , Polissacarídeos Bacterianos/química , Gomas Vegetais/química , Emulsões/química , Proteínas de Soja/química , Galactanos/química , Óleos de Peixe/química , Ânions/química
3.
Microb Cell Fact ; 23(1): 117, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644470

RESUMO

Several antiviral agents lost their efficacy due to their severe side effects and virus mutations. This study aimed to identify and optimize the conditions for exopolysaccharide (EPS) production from a newly isolated cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1, besides exploring its antiviral activity. The cyanobacterial EPS was purified through DEAE-52 cellulose column with a final yield of 83.75%. Different analysis instruments were applied for EPS identification, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and gas chromatographic-mass spectrometry (GC-MS). Plackett-Burman's design demonstrated that working volume (X1), EDTA (X2), inoculum size (X3), CaCl2 (X4), and NaCl (X5) are the most important variables influencing EPS production. Central composite design (CCD) exhibited maximum EPS yield (9.27 mg/mL) at a working volume of 300 mL in a 1 L volumetric flask, EDTA 0.002 g/L, inoculum size 7%, CaCl2 0.046 g/L, and NaCl 20 g/L were applied. EPS showed potent antiviral activities at different stages of herpes simplex virus type-1 and 2 (HSV-1, HSV-2), adenovirus (ADV) and coxsackievirus (A16) infections. The highest half-maximal inhibitory concentration (IC50) (6.477 µg/mL) was recorded during HSV-1 internalization mechanism, while the lowest IC50 (0.005669 µg/mL) was recorded during coxsackievirus neutralization mechanism.


Assuntos
Antivirais , Cianobactérias , Polissacarídeos Bacterianos , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Cianobactérias/química , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Polissacarídeos Bacterianos/biossíntese , Animais , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Chlorocebus aethiops
4.
Int J Pharm ; 656: 124073, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38569977

RESUMO

Traumatic multidrug-resistant bacterial infections are the most threat to wound healing. Lower extremity wounds under diabetic conditions display a significant delay during the healing process. To overcome these challenges, the utilization of protein-based nanocomposite dressings is crucial in implementing a successful regenerative medicine approach. These dressings hold significant potential as polymer scaffolds, allowing them to mimic the properties of the extracellular matrix (ECM). So, the objective of this study was to develop a nanocomposite film using dialdehyde-xanthan gum/soy protein isolate incorporated with propolis (PP) and halloysite nanotubes (HNTs) (DXG-SPI/PP/HNTs). In this protein-polysaccharide hybrid system, the self-healing capability was demonstrated through Schiff bonds, providing a favorable environment for cell encapsulation in the field of tissue engineering. To improve the properties of the DXG-SPI film, the incorporation of polyphenols found in PP, particularly flavonoids, is proposed. The synthesized films were subjected to investigations regarding degradation, degree of swelling, and mechanical characteristics. Additionally, halloysite nanotubes (HNTs) were introduced into the DXG-SPI/PP nanocomposite films as a reinforcing filler with varying concentrations of 3 %, 5 %, and 7 % by weight. The scanning electron microscope (SEM) analysis confirmed the proper embedding and dispersion of HNTs onto the DXG-SPI/PP nanocomposite films, leading to functional interfacial interactions. The structure and crystallinity of the synthesized nanocomposite films were characterized using Fourier Transform Infrared Spectrometry (FTIR) and X-ray diffraction (XRD), respectively. Moreover, the developed DXG-SPI/PP/HNTs nanocomposite films significantly improved cell growth of NIH-3T3 fibroblast cells in the presence of PP and HNTs, indicating their cytocompatibility. The antibacterial activity of the nanocomposite was evaluated against Escherichia coli (E. Coli) and Staphylococcus aureus (S. Aureus), which are commonly associated with wound infections. Overall, our findings suggest that the synthesis of DXG-SPI/PP/HNTs nanocomposite scaffolds holds great promise as a clinically relevant biomaterial and exhibits strong potential for numerous challenging biomedical applications.


Assuntos
Antibacterianos , Antioxidantes , Argila , Nanocompostos , Nanotubos , Polissacarídeos Bacterianos , Própole , Proteínas de Soja , Cicatrização , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Nanotubos/química , Argila/química , Cicatrização/efeitos dos fármacos , Animais , Própole/química , Própole/farmacologia , Própole/administração & dosagem , Polissacarídeos Bacterianos/química , Camundongos , Proteínas de Soja/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Nanocompostos/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
5.
Carbohydr Res ; 539: 109118, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643705

RESUMO

Microbial exopolysaccharides (EPSs) have emerged as a fascinating area of research in the field of pharmacology due to their diverse and potent biological activities. This review paper aims to provide a comprehensive overview of the pharmacological properties exhibited by EPSs, shedding light on their potential applications in various therapeutic areas. The review begins by introducing EPSs, exploring their various sources, significance in microbial growth and survival, and their applications across different industries. Subsequently, a thorough examination of the pharmaceutical properties of microbial EPSs unveils their antioxidant, immunomodulatory, antimicrobial, antidepressant, antidiabetic, antiviral, antihyperlipidemic, hepatoprotective, anti-inflammatory, and anticancer activities. Mechanistic insights into how different EPSs exert these therapeutic effects have also been discussed in this review. The review also provides comprehensive information about the monosaccharide composition, backbone, branches, glycosidic bonds, and molecular weight of pharmacologically active EPSs from various microbial sources. Furthermore, the factors that can affect the pharmacological activities of EPSs and approaches to improve the EPSs' pharmacological activity have also been discussed. In conclusion, this review illuminates the immense pharmaceutical promise of microbial EPS as versatile bioactive compounds with wide-ranging therapeutic applications. By elucidating their structural features, biological activities, and potential applications, this review aims to catalyze further research and development efforts in leveraging the pharmaceutical potential of microbial EPS for the advancement of human health and well-being, while also contributing to sustainable and environmentally friendly practices in the pharmaceutical industry.


Assuntos
Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Humanos , Animais
6.
Nature ; 628(8009): 901-909, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570679

RESUMO

Capsular polysaccharides (CPSs) fortify the cell boundaries of many commensal and pathogenic bacteria1. Through the ABC-transporter-dependent biosynthesis pathway, CPSs are synthesized intracellularly on a lipid anchor and secreted across the cell envelope by the KpsMT ABC transporter associated with the KpsE and KpsD subunits1,2. Here we use structural and functional studies to uncover crucial steps of CPS secretion in Gram-negative bacteria. We show that KpsMT has broad substrate specificity and is sufficient for the translocation of CPSs across the inner bacterial membrane, and we determine the cell surface organization and localization of CPSs using super-resolution fluorescence microscopy. Cryo-electron microscopy analyses of the KpsMT-KpsE complex in six different states reveal a KpsE-encaged ABC transporter, rigid-body conformational rearrangements of KpsMT during ATP hydrolysis and recognition of a glycolipid inside a membrane-exposed electropositive canyon. In vivo CPS secretion assays underscore the functional importance of canyon-lining basic residues. Combined, our analyses suggest a molecular model of CPS secretion by ABC transporters.


Assuntos
Cápsulas Bacterianas , Proteínas de Escherichia coli , Escherichia coli , Polissacarídeos Bacterianos , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/química , Cápsulas Bacterianas/ultraestrutura , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Glicolipídeos/química , Glicolipídeos/metabolismo , Hidrólise , Microscopia de Fluorescência , Modelos Moleculares , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/química , Especificidade por Substrato
7.
Int J Biol Macromol ; 266(Pt 1): 131122, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527676

RESUMO

Xanthan gum is a nonionic polysaccharide widely explored in biomedical, nutraceutical, and pharmaceutical fields. XG suffers from several drawbacks like poor dissolution, lower bioavailability and an inability to form hydrogels. The carboxymethyl derivative of XG, CMX, has better solubility, dissolution, and bioavailability characteristics. Moreover, due to its anionic character, it forms water insoluble hydrogels upon crosslinking with metal cations. CMX hydrogels are used to prepare matrix tablets, microparticles, beads, and films. CMX hydrogels has been used in drug delivery and tissue engineering fields. CMX hydrogels are used for sustained gastrointestinal, colon targeted, and transdermal delivery of drugs. CMX nanoparticles have been used for targeted delivery of anticancer drugs to tumor cells. CMX hydrogels have already made significant strides in drug delivery and tissue engineering fields. Further understanding of the physicochemical properties and rheological characteristics of CMX would enable researchers to explore newer applications of CMX. This review article thus aims to discuss the synthesis, physicochemical properties, and rheological characteristics of CMX. The article also gives critical insights on the versatility of CMX as a drug delivery carrier and presents prospective trends on applications of CMX.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Polissacarídeos Bacterianos , Reologia , Polissacarídeos Bacterianos/química , Humanos , Hidrogéis/química , Hidrogéis/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/síntese química , Fenômenos Químicos , Animais
8.
Int J Biol Macromol ; 263(Pt 1): 130193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360243

RESUMO

Thermoviscosifying polymers refer to a category of smart materials that exhibit a responsive behavior to environmental stimuli, specifically demonstrating a natural rise in viscosity of solutions as the temperature increases. The temperature-dependent behavior exhibited by thermally viscous polymers renders them potentially advantageous in the context of Enhanced Oil Recovery (EOR). There exists a dearth of research pertaining to the application of thermoviscosifying polymer for better recovery in reservoirs characterized by high temperatures and high salt content. In order to tackle the mentioned concerns, this study examined the utilization of welan gum modified with poly(2-oxazoline) as thermally responsive chain segments to enhance viscosity. The objective was to evaluate the ability to enhance viscosity under thermal conditions and to assess their effectiveness in displacement of reservoir oil in high temperature and high salt environments. This study aimed to establish a theoretical framework for understanding the correlation between the molecular structure and performance of novel thermally viscous polymers. Additionally, it sought to offer practical insights into designing the molecular structure of thermally viscous polymers suitable for polymer flooding in high temperature and high salt environments. Furthermore, the study proposed the application of these new thermoviscosifying polymers for EOR.


Assuntos
Oxazóis , Polímeros , Polissacarídeos Bacterianos/química
9.
Int J Biol Macromol ; 260(Pt 2): 129610, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246463

RESUMO

The aim of this work was to determine rheological and disperse characteristics and stability of oil-in-water emulsions stabilized by soy protein isolate (SPI) and xanthan gum (XG), as natural components. The effects of their combination on emulsion stabilization have not been investigated yet. The existence of interactions between the two macromolecules were indicated by the influence of XG on SPI surface hydrophobicity and surface tension values. Increase in SPI concentration from 1 to 3 % shift of distribution curves towards smaller particle size, while the opposite effects of further increase of SPI was obtained. The emulsions stabilized by SPI showed shear-thinning flow behavior, which changed to thixotropic at 5 % of SPI concentration. The presence of XG in emulsions at low concentrations did not affect the size distribution of the droplets, while at 0.1 % of XG Sauter mean diameter value raised and distribution curves were shifted towards a higher particle size. The presence of XG at higher concentration resulted in thixotropic flow behavior of emulsions. Also, increase in XG concentration led to the increase in consistency index and extent of non-Newtonian behavior of emulsions and enhanced the influence of the elastic modulus and creaming stability of the systems.


Assuntos
Proteínas de Soja , Água , Emulsões/química , Proteínas de Soja/química , Água/química , Polissacarídeos Bacterianos/química
10.
J Sci Food Agric ; 104(2): 818-828, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37683050

RESUMO

BACKGROUND: Lima bean protein isolate (LPI) is an underutilized plant protein. Similar to other plant proteins, it may display poor emulsification properties. In order to improve its emulsifying properties, one effective approach is using protein and polysaccharide mixtures. This work investigated the structural and emulsifying properties of LPI as well as the development of an LPI/xanthan gum (XG)-stabilized oil-in-water emulsion. RESULTS: The highest protein solubility (84.14%) of LPI was observed and the molecular weights (Mw ) of most LPI subunits were less than 35 kDa. The enhanced emulsifying activity index (15.97 m2 g-1 ) of LPI might be associated with its relatively high protein solubility and more low-Mw subunits (Mw < 35 kDa). The effects of oil volume fraction (ϕ) on droplet size, microstructure, rheological behavior and stability of emulsions were investigated. As ϕ increased from 0.2 to 0.8, the emulsion was arranged from spherical and dispersed oil droplets to polyhedral packing of oil droplets adjacent to each other, while the LPI/XG mixtures changed from particles (in the uncrowded interfacial layer) to lamellae (in the crowded interfacial layer). When ϕ was 0.6, the emulsion was in a transitional state with the coexistence of particles and lamellar structures on the oil droplet surface. The LPI/XG-stabilized emulsions with ϕ values of 0.6-0.8 showed the highest stability during a 14-day storage period. CONCLUSION: This study developed a promising plant-based protein resource, LPI, and demonstrates potential application of LPI/XG as an emulsifying stabilizer in foods. © 2023 Society of Chemical Industry.


Assuntos
Phaseolus , Proteínas de Plantas , Emulsões/química , Proteínas de Plantas/química , Polissacarídeos Bacterianos/química , Água/química
11.
Int J Biol Macromol ; 259(Pt 1): 128872, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154720

RESUMO

Microparticle-enhanced cultivation was used to enhance the production of exopolysaccharides (EPSs) from Antrodia cinnamomea. The structure and antibacterial activity of two EPSs produced by A. cinnamomea treated with Al2O3 [EPS-Al (crude) and EPS-Al-p (purified)] and without Al2O3 [EPS-C (crude) and EPS-C-p (purified)] were compared. It was observed that the addition of 4 g/L Al2O3 at 0 h resulted in the highest EPS yield of 1.46 g/L, possible attributed to the enhanced permeability of the cell membrane. The structural analysis revealed that EPS-C-p and EPS-Al-p had different structures. EPS-C-p was hyperbranched and spherical with a Mw of 10.8 kDa, while EPS-Al-p was irregular and linear with a Mw of 12.5 kDa. The proportion of Man in EPS-Al-p decreased, while those of Gal and Glc increased when compared to EPS-C-p. The total molar ratios of 6-Glcp and 4-Glcp in EPS-Al-p are 1.45 times that of EPS-C-p. Moreover, EPSs could alter bacterial cell morphology, causing intracellular substance leakage and growth inhibition, with EPS-Al having a stronger antibacterial activity than EPS-C. In conclusion, A. cinnamomea treated with Al2O3 could produce more EPSs, changing monosaccharide composition and glycosidic linkage profile, which could exert stronger antibacterial activity than that produced by untreated A. cinnamomea.


Assuntos
Antrodia , Polyporales , Humanos , Polyporales/metabolismo , Monossacarídeos/análise , Antrodia/química , Polissacarídeos Bacterianos/química
12.
Int J Biol Macromol ; 257(Pt 2): 128811, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101683

RESUMO

Microbial exopolysaccharide is an eco-friendly and non-toxic biopolymeric materials widely used in various industrial fields such as pharmaceutical, food and cosmetics based on its structural, rheological and physiochemical properties. A microbial exopolysaccharide (VF39-EPS) was directly isolated from Rhizobium leguminosarum bv. viciae VF39. Structural analysis using FTIR and 2D NMR spectroscopy confirmed the complete chemical structures of VF39-EPS as 3-hydroxybutanoylglycan with octasaccharide repeating units containing two pyruvyl, two acetyl, and one 3-hydroxybutanoyl group. VF39-EPS exhibited thermal stability up to 275 °C and showed characteristic rheological behaviors of structural fluid with weak gel-like properties above 4 % the aqueous solution, suggesting VF39-EPS as a potential effective thickener or hydrogel scaffolder. Flow behavior tests validated broad stability at a wide range of both pHs from 2 to 12 and temperatures from 25 to 75 °C, and even in the presence of various salts. Furthermore, VF39-EPS showed excellent antioxidant effects of 78.5 and 62.4 % (n = 3, p < 0.001) in DPPH scavenging activity and hydroxyl radical scavenging activity, respectively. Therefore, those structural, rheological and antioxidant properties suggest that VF39-EPS could be one of the excellent biomaterial candidates for cosmetic, food and pharmaceutical industries based on its characteristic rheological behaviors in various condition and excellent antioxidant activity.


Assuntos
Rhizobium leguminosarum , Antioxidantes/farmacologia , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química
13.
Sci Rep ; 13(1): 21871, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072846

RESUMO

Bacterial exopolysaccharides are homopolymeric or heteropolymeric polysaccharides with large molecular weights (10-1000 kDa). Exopolysaccharides' functional uses and potential have revolutionized the industrial and medicinal industries. Hence, the aim of the present study was to optimize the production of bacterial exopolysaccharide and apply it as a capping agent for selenium nanoparticles synthesis. Exopolysaccharide (EPS) producing Lactic acid bacteria (LAB) were isolated from dairy products then biochemically characterized and assessed for their potential antimicrobial effect. The most potent EPS producer was identified as Lactiplantibacillus plantarum strain A2 with accession number OP218384 using 16S rRNA sequencing. Overall, FTIR data of the extracted EPS revealed similarity with amylopectin spectrum. 1H NMR spectrum revealed an α-anomeric configuration of the glycosidic linkage pattern in the polysaccharides while the 13C NMR spectrum can also be separated into two main portions, the anomeric carbons region (δ 98-102 ppm) and the non-anomeric carbons region (δ 60-81 ppm). Antimicrobial activity of the produced EPS showed maximum activity against Staphylococcus aureus, MRSA, Enterobacter aerogenes, Klebsiella pneumoniae and Candida albicans respectively. The EPS capsule layer surrounding the bacterial cells was detected by TEM study. Optimization of EPS production was evaluated using Taguchi design, trial 23 reported the highest biomass yield and EPS output (6.5 and 27.12 g/L respectively) with 2.4 and 3.3 folds increase (from the basal media) respectively. The optimized exopolysaccharide was used as a capping and stabilizing agent for selenium nanoparticles (EPS-SeNPs) synthesis. Zeta potential, size and PDI of the synthesized nanoparticles were - 19.7 mV, 45-65 nm and 0.446 respectively with strong bactericidal and fungicidal effect against the tested pathogens. Complete microbial growth eradication was recorded after 6, 8 and 10 h against Staphylococcus aureus, Candida albicans and Klebsiella pneumoniae respectively. EPS-SeNPs showed a potent antioxidant effect reached 97.4% and anticancer effect against A549 lung cancer cell line (IC50 reached 5.324 µg/mL). EPS-SeNPs inhibited cancerous cell growth at S phase. Moreover, molecular studies revealed the anti-apoptotic activity of Bcl2's was inhibited and Bax was activated. The present investigation successfully synthesized selenium nanoparticles through bacterial EPS with significantly high antimicrobial and anticancer activity.


Assuntos
Anti-Infecciosos , Neoplasias Pulmonares , Nanopartículas , Selênio , Humanos , Selênio/farmacologia , Selênio/química , RNA Ribossômico 16S/genética , Polissacarídeos Bacterianos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Nanopartículas/química , Staphylococcus aureus/genética , Candida albicans , Bactérias/genética
14.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959867

RESUMO

Bifidobacterium longum subsp. longum XZ01 (BLSL1) is a new strain (isolated from the intestines of healthy people and deposited with the preservation number GDMCC 61618). An exopolysaccharide, S-EPS-1, was successfully isolated from the strain and then systematically investigated for the first time. Some structural features of S-EPS-1 were analyzed by chemical component, HPLC, ultraviolet, infrared, and nuclear magnetic resonance spectrum analyses. These analyses revealed that S-EPS-1 is a neutral heteropolysaccharide with an α-configuration. It contains mainly mannose and glucose, as well as small amounts of rhamnose and galactose. The molecular weight of S-EPS-1 was calculated to be 638 kDa. Several immunoregulatory activity assays indicated that S-EPS-1 could increase proliferation, phagocytosis, and NO production in vitro. In addition, S-EPS-1 could upregulate the expression of cytokines at the mRNA level through TLR4-mediated activation of the NF-κB signaling pathway in RAW 264.7 cells. Finally, S-EPS-1 was demonstrated to exhibit antioxidant activity by ABTS+• scavenging, DPPH• scavenging, and ferric-ion reducing power assays. Furthermore, S-EPS-1 can protect cells from oxidative stress and shows no cytotoxicity. These beneficial effects can be partly attributed to its antioxidant ability. Thus, the antioxidant S-EPS-1 may be applied as a functional food in the future.


Assuntos
Antioxidantes , Polissacarídeos Bacterianos , Humanos , Antioxidantes/química , Polissacarídeos Bacterianos/química , Bifidobacterium/metabolismo , Espectroscopia de Ressonância Magnética
15.
Sci Rep ; 13(1): 17888, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857676

RESUMO

Exopolysaccharides (EPSs) possess distinctive rheological and physicochemical properties and innovative functionality. This study aimed to investigate the physicochemical, bioactive, and rheological properties of an EPS secreted by Lactococcus lactis subsp. lactis C15. EPS-C15 was found to have an average molecular weight of 8.8 × 105 Da and was identified as a hetero-EPS composed of arabinose, xylose, mannose, and glucose with a molar ratio of 2.0:2.7:1.0:21.3, respectively. The particle size and zeta potential represented 311.2 nm and - 12.44 mV, respectively. FITR exhibited that EPS-C15 possessed a typical polysaccharide structure. NMR displayed that EPS-C15 structure is → 3)α-d-Glcvi (1 → 3)α-d-Xylv (1 → 6)α-d-Glciv(1 → 4)α-d-Glc(1 → 3)ß-d-Man(1 → 2)α-d-Glci(1 → . EPS-C15 scavenged DPPH and ABTS free radicals with 50.3% and 46.4% capacities, respectively. Results show that the antiproliferative activities of EPS-C15 revealed inhibitions of 49.7% and 88.1% against MCF-7 and Caco-2 cells, respectively. EPS-C15 has antibacterial properties that inhibited Staphylococcus aureus (29.45%), Salmonella typhimurium (29.83%), Listeria monocytogenes (30.33%), and E. coli O157:H7 (33.57%). The viscosity of EPS-C15 decreased as the shear rate increased. The rheological properties of the EPS-C15 were affected by changes in pH levels and the addition of salts. EPS-C15 is a promising biomaterial that has potential applications in various industries, such as food, pharmaceuticals, and healthcare.


Assuntos
Escherichia coli O157 , Lactococcus lactis , Probióticos , Humanos , Células CACO-2 , Polissacarídeos/química , Probióticos/química , Polissacarídeos Bacterianos/química
16.
Int J Biol Macromol ; 253(Pt 4): 126868, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37729997

RESUMO

In this study, olive oil nanoemulsion modified with xanthan gum and gum acacia was explored as a potential controlled topical delivery vehicle. Oil-in-water nanoemulsion formulated with optimized composition of olive oil, tween 80, and water was used as the drug carrier and further modified with gum. Effect of gum on nanoemulsion different physiochemical characteristics, stability, rheology, drug release and encapsulation efficiency were investigated. Results showed that developed nanoemulsion behaved as low viscosity Newtonian fluid and released 100 % drug within 6 h. Modification with xanthan and gum acacia had significantly improved formulation viscosity, drug encapsulation efficiency (>85 %) and controlled drug release up to 40 % with release pattern following Korsmeyer-Peppas model. Additionally, xanthan gum modified formulation exhibited shear thinning rheology by forming an extended network in the continuous phase, whereas gum acacia modified formulation behaved as Newtonian fluid at high shear rate (>200 s-1). Furthermore, xanthan gum modified formulations had improved zeta potential, stability, monodispersity, and hemocompatibility and showed high antibacterial activity against S. aureus than gum acacia modified formulations. These results indicate the higher potential of xanthan gum modified formulation as a topical delivery vehicle. Moreover, skin irritation test demonstrated the safety of developed formulations for topical application.


Assuntos
Goma Arábica , Staphylococcus aureus , Humanos , Azeite de Oliva , Emulsões/química , Polissacarídeos Bacterianos/química , Viscosidade , Inflamação , Água/química
17.
Small ; 19(44): e2303887, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37392054

RESUMO

Wound healing, known as a fundamental healthcare issue worldwide, has been attracting great attention from researchers. Here, novel bioactive gellan gum microfibers loaded with antibacterial peptides (ABPs) and vascular endothelial growth factor (VEGF) are proposed for wound healing by using microfluidic spinning. Benefitting from the high controllability of microfluidics, bioactive microfibers with uniform morphologies are obtained. The loaded ABPs are demonstrated to effectively act on bacteria at the wound site, reducing the risk of bacterial infection. Besides, sustained release of VEGF from microfibers helps to accelerate angiogenesis and further promote wound healing. The practical value of woven bioactive microfibers is demonstrated via animal experiments, where the wound healing process is greatly facilitated because of the excellent circulation of air and nutritious substances. Featured with the above properties, it is believed that the novel bioactive gellan gum microfibers would have a remarkable effect in the field of biomedical application, especially in promoting wound healing.


Assuntos
Microfluídica , Fator A de Crescimento do Endotélio Vascular , Animais , Cicatrização , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química
18.
Int J Biol Macromol ; 246: 125594, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37390994

RESUMO

This study involved the extraction of an exopolysaccharide (EPS) from Azotobacter salinestris AZ-6, which was isolated from soil cultivated with leguminous plants. In a medium devoid of nitrogen, the AZ-6 strain displayed a maximum EPS yield of 1.1 g/l and the highest relative viscosity value of 3.4. The homogeneity of the polymer was demonstrated by the average molecular weight of 1.61 × 106 Da and a retention time of 17.211 min for levan. The presence of characteristic functional groups and structural units of carbohydrate polymers has been confirmed through spectroscopic analyses utilizing Fourier-transform infrared (FT-IR) and nuclear magnetic resonance (NMR) techniques. Thermogravimetric analysis (TGA) revealed a noteworthy decrease in weight (74 %) in the temperature range spanning from 260 to 350 °C. X-ray diffraction (XRD) was utilized to verify the crystalline and amorphous characteristics of EPS-AZ-6. The EPS-AZ-6 exhibited significant cytotoxicity against the MCF-7 tumor cell line, as evidenced by an IC50 value of 6.39 ± 0.05 µg/ml. It also demonstrated a moderate degree of cytotoxicity towards HepG-2 cell line, as indicated by an IC50 value of 29.79 ± 0.41 µg/ml. EPS-AZ-6 exhibited potent antioxidant and in vitro antibacterial properties. These characteristics suggest the potential application value of EPS-AZ-6 in the food industry and pharmaceutical applications.


Assuntos
Azotobacter , Espectroscopia de Infravermelho com Transformada de Fourier , Antioxidantes/farmacologia , Antioxidantes/química , Peso Molecular , Polissacarídeos Bacterianos/química
19.
Int J Biol Macromol ; 242(Pt 2): 124842, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182634

RESUMO

Exopolysaccharides (EPS) are produced by probiotic bacteria Lactiplantibacillus plantarum PRK7 and L. plantarum PRK11. The structure of EPS-7 and EPS-11 was characterized by Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), gas chromatography-mass spectroscopy (GCMS), and thermogravimetric analysis (TGA). Further, in in vitro studies antioxidant, emulsion, and antibiofilm activity were investigated. The FTIR spectrum confirmed the presence of polysaccharides in EPS-7 and EPS-11, with absorbance at 1654.93 and 1655.33 cm-1, respectively. H1 NMR further confirmed the presence of glucose, galactose, xylose, and mannose. Sugar derivatives in EPS-7 and EPS-11 were further confirmed with GCMS. The SEM analysis revealed that EPS-7 had a weblike structure and EPS-11 had a smooth porous layer. The result of the TGA revealed that EPS-7 and EPS-11 had greater thermal stability at 319.1 and 300.1 °C, respectively. Furthermore, EPS-7 and EPS-11 showed a good percentage of free radical scavenging in DPPH (89.77 % and 93.1 %), ABTS (57.65 % and 58.63 %), hydroxyl radical scavenging (44.46 % and 40.308 %), and reducing power assay. The emulsion activity was confirmed with edible oils such as coconut oil, sesame oil, almond oil, castor oil, and neem oil. The highest emulsion activity for EPS-7 and EPS-11 was found with coconut and castor oil. In addition, the antibiofilm activity against pathogens revealed that EPS can prevent biofilm formation. Thus, it was found that EPS-7 and EPS-11 possess good structural characteristics and their biological activity makes them ideal for applications in the food and pharmaceutical industry.


Assuntos
Antioxidantes , Polissacarídeos Bacterianos , Antioxidantes/farmacologia , Antioxidantes/química , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química , Emulsões , Espectroscopia de Infravermelho com Transformada de Fourier , Biofilmes
20.
J Food Sci ; 88(6): 2704-2712, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37194945

RESUMO

Exopolysaccharides (EPSs) of probiotics are naturally nontoxic antioxidants with some interesting biological activities. This research aims to explore the structural and antioxidant properties of the EPS from Clostridium butyricum, a probiotics widely existed in human and animal intestines. EPS of C. butyricum RO-07 was purified through a combination of anion-exchange column chromatography and gel chromatography and determined to be composed of glucosamine, arabinose, galactosamine, galactose, glucose, and xylose in a molar ratio of 1:1:1:2:1:1 with a molecular weight 1.23 × 104  Da. It exhibited a stronger antioxidant activity than ascorbic acid, with scavenging activities up to 75.2% and 95.0% against hydroxyl radical (•OH) and superoxide radical (O2 - •), respectively. It also performed protective effects on DNA against radiation destruction by ultraviolet and reactive oxygen species generated oxidation stress. With these superior advantages in oxidants and radiation resistance, the EPS from C. butyricum RO-07 therefore has great potential to be applied in food and cosmetic industry.


Assuntos
Antioxidantes , Clostridium butyricum , Animais , Humanos , Antioxidantes/química , Clostridium butyricum/metabolismo , Ácido Ascórbico , Estresse Oxidativo , Dano ao DNA , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA